In-Class Exercise 4: Calibrating Hedonic Pricing Model for Private Highrise Property with GWR Method

1 Overview

In this in-class exercise, we will cover the same topic in hands-on exercise 4 and provide more in-depth details on several sections.

Geographically weighted regression (GWR) is a spatial statistical technique that examines the way in which the relationships between a dependent variable and a set of predictors might vary over space. GWR operates by moving a search window from one regression point to the next, working sequentially through all the existing regression points in the data set. In this hands-on exercise, we will build hedonic pricing models by using GWR methods. The dependent variable is the resale prices of condominium in 2015. The independent variables are divided into either structural and location-based.

2 The Data

There are two data sets used in this exercise and they are:

  • URA Master Plan subzone boundary in shapefile format (i.e. MP14_SUBZONE_WEB_PL)

  • condo_resale_2015 in csv format (i.e. condo_resale_2015.csv)

3 Getting Started

The R packages needed for this exercise are as follows:

  • olsrr-R package for building OLS and performing diagnostics tests

  • GWmodel- R package for calibrating geographical weighted family of models

  • corrplot- R package for multivariate data visualisation and analysis

  • sf - Spatial data handling

  • tidyverse, including readr, ggplot2, and dplyr - Attribute data handling

  • tmap - choropleth mapping

The code chunk below installs and launches these packages into the R environment.

pacman::p_load(olsrr, corrplot, ggpubr, sf, spdep, GWmodel, tmap, tidyverse, gtsummary)

4 A note on GWmodel

GWmodel package provides a collection of localised spatial statistical methods, and is suitable for use in situations when data are not described well by a global model. The resulting output are mapped which provides a useful tool to explain data spatial heterogeneity. Currently, GWmodel includes functions for: GW summary statistics, GW principal components analysis, GW regression, and GW discriminant analysis.

5 Geospatial Data Wrangling

5.1 Importing geospatial data

The geospatial data in this hands-on exercise (MP14_SUBZONE_WEB_PL) is in ESRI shapefile format and contains URA Master Plan 2014’s planning subzone boundaries. These geographic boundaries are represented by polygon features. The GIS data is in svy21 projected coordinates systems.

In the following code chunk, we will import MP_SUBZONE_WEB_PL shapefile by using st_read() of sf packages.

mpsz = st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\lohsiying\ISSS624\in_class_ex\ex4\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

The report above shows that the R object used to contain the imported MP14_SUBZONE_WEB_PL shapefile is called mpsz and it is a simple feature object. The geometry type is multipolygon. it is also important to note that mpsz simple feature object does not have EPSG information.

5.2 Updating CRS information

We will need to updated the imported file with the correct ESPG code (i.e. 3414). Although the data is load as svy21, it can be treated as a Singapore code (there could be some slight alignments done in Singapore e.g by 30 m etc). So it is better to align and use international CRS code.

mpsz_svy21 <- st_transform(mpsz, 3414)

We can then verify the projection of the newly transformed mpsz_svy21 by using st_crs() from sf package.

st_crs(mpsz_svy21)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

We can observe that the EPSG is indicated with 3414.

We will then reveal the extent of mpsz_svy21 by using st_bbox() from sf package.

st_bbox(mpsz_svy21)
     xmin      ymin      xmax      ymax 
 2667.538 15748.721 56396.440 50256.334 

6 Aspatial Data Wrangling

6.1 Importing the aspatial data

The condo_resale_2015 is in csv file format. The codes chunk below uses read_csv() function of readr package to import condo_resale_2015 into R as a tibble data frame called condo_resale.

condo_resale = read_csv("data/aspatial/Condo_resale_2015.csv")
Rows: 1436 Columns: 23
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (23): LATITUDE, LONGITUDE, POSTCODE, SELLING_PRICE, AREA_SQM, AGE, PROX_...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

After importing the data, we will use glimpse() to display its data structure.

glimpse(condo_resale)
Rows: 1,436
Columns: 23
$ LATITUDE             <dbl> 1.287145, 1.328698, 1.313727, 1.308563, 1.321437,…
$ LONGITUDE            <dbl> 103.7802, 103.8123, 103.7971, 103.8247, 103.9505,…
$ POSTCODE             <dbl> 118635, 288420, 267833, 258380, 467169, 466472, 3…
$ SELLING_PRICE        <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1320…
$ AREA_SQM             <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 168,…
$ AGE                  <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22, 6,…
$ PROX_CBD             <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783402…
$ PROX_CHILDCARE       <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543, 0…
$ PROX_ELDERLYCARE     <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.121…
$ PROX_URA_GROWTH_AREA <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.410632,…
$ PROX_HAWKER_MARKET   <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969, 0…
$ PROX_KINDERGARTEN    <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076, 0…
$ PROX_MRT             <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.528…
$ PROX_PARK            <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.116…
$ PROX_PRIMARY_SCH     <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.709…
$ PROX_TOP_PRIMARY_SCH <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.709…
$ PROX_SHOPPING_MALL   <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.307…
$ PROX_SUPERMARKET     <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.581…
$ PROX_BUS_STOP        <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340, 0…
$ NO_Of_UNITS          <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34, 3…
$ FAMILY_FRIENDLY      <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
$ FREEHOLD             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

Next, we will use summary() of base R to display the summary statistics of condo_resale tibble data frame.

summary(condo_resale)
    LATITUDE       LONGITUDE        POSTCODE      SELLING_PRICE     
 Min.   :1.240   Min.   :103.7   Min.   : 18965   Min.   :  540000  
 1st Qu.:1.309   1st Qu.:103.8   1st Qu.:259849   1st Qu.: 1100000  
 Median :1.328   Median :103.8   Median :469298   Median : 1383222  
 Mean   :1.334   Mean   :103.8   Mean   :440439   Mean   : 1751211  
 3rd Qu.:1.357   3rd Qu.:103.9   3rd Qu.:589486   3rd Qu.: 1950000  
 Max.   :1.454   Max.   :104.0   Max.   :828833   Max.   :18000000  
    AREA_SQM          AGE           PROX_CBD       PROX_CHILDCARE    
 Min.   : 34.0   Min.   : 0.00   Min.   : 0.3869   Min.   :0.004927  
 1st Qu.:103.0   1st Qu.: 5.00   1st Qu.: 5.5574   1st Qu.:0.174481  
 Median :121.0   Median :11.00   Median : 9.3567   Median :0.258135  
 Mean   :136.5   Mean   :12.14   Mean   : 9.3254   Mean   :0.326313  
 3rd Qu.:156.0   3rd Qu.:18.00   3rd Qu.:12.6661   3rd Qu.:0.368293  
 Max.   :619.0   Max.   :37.00   Max.   :19.1804   Max.   :3.465726  
 PROX_ELDERLYCARE  PROX_URA_GROWTH_AREA PROX_HAWKER_MARKET PROX_KINDERGARTEN 
 Min.   :0.05451   Min.   :0.2145       Min.   :0.05182    Min.   :0.004927  
 1st Qu.:0.61254   1st Qu.:3.1643       1st Qu.:0.55245    1st Qu.:0.276345  
 Median :0.94179   Median :4.6186       Median :0.90842    Median :0.413385  
 Mean   :1.05351   Mean   :4.5981       Mean   :1.27987    Mean   :0.458903  
 3rd Qu.:1.35122   3rd Qu.:5.7550       3rd Qu.:1.68578    3rd Qu.:0.578474  
 Max.   :3.94916   Max.   :9.1554       Max.   :5.37435    Max.   :2.229045  
    PROX_MRT         PROX_PARK       PROX_PRIMARY_SCH  PROX_TOP_PRIMARY_SCH
 Min.   :0.05278   Min.   :0.02906   Min.   :0.07711   Min.   :0.07711     
 1st Qu.:0.34646   1st Qu.:0.26211   1st Qu.:0.44024   1st Qu.:1.34451     
 Median :0.57430   Median :0.39926   Median :0.63505   Median :1.88213     
 Mean   :0.67316   Mean   :0.49802   Mean   :0.75471   Mean   :2.27347     
 3rd Qu.:0.84844   3rd Qu.:0.65592   3rd Qu.:0.95104   3rd Qu.:2.90954     
 Max.   :3.48037   Max.   :2.16105   Max.   :3.92899   Max.   :6.74819     
 PROX_SHOPPING_MALL PROX_SUPERMARKET PROX_BUS_STOP       NO_Of_UNITS    
 Min.   :0.0000     Min.   :0.0000   Min.   :0.001595   Min.   :  18.0  
 1st Qu.:0.5258     1st Qu.:0.3695   1st Qu.:0.098356   1st Qu.: 188.8  
 Median :0.9357     Median :0.5687   Median :0.151710   Median : 360.0  
 Mean   :1.0455     Mean   :0.6141   Mean   :0.193974   Mean   : 409.2  
 3rd Qu.:1.3994     3rd Qu.:0.7862   3rd Qu.:0.220466   3rd Qu.: 590.0  
 Max.   :3.4774     Max.   :2.2441   Max.   :2.476639   Max.   :1703.0  
 FAMILY_FRIENDLY     FREEHOLD      LEASEHOLD_99YR  
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :0.0000   Median :0.0000  
 Mean   :0.4868   Mean   :0.4227   Mean   :0.4882  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  

6.2 Converting aspatial data frame into a sf object

We will now convert the aspatial condo_resale tibble data frame into a sf object. The code chunk below converts condo_resale data frame into a simple feature data frame by using st_as_sf() from sf package. We will then use st_transform() from sf package to convert the coordinates from wgs84 (i.e. crs=4326) to svy21 (i.e. crs=3414).

condo_resale.sf <- st_as_sf(condo_resale,
                            coords = c("LONGITUDE", "LATITUDE"),
                            crs=4326) %>%
  st_transform(crs=3414)

Next, head() is used to list the content of condo_resale.sf object. Note that in condo_resale.sf has 1 column less compared to condo_resale. condo_resale is a typical R tibble data frame, it contains the longitude and latitude columns whereas condo_resale.sf has the geometry column instead. You need to be aware that the function / method you use requires the data to be in which format and use accordingly.

head(condo_resale.sf)
Simple feature collection with 6 features and 21 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 22085.12 ymin: 29951.54 xmax: 41042.56 ymax: 34546.2
Projected CRS: SVY21 / Singapore TM
# A tibble: 6 × 22
  POSTCODE SELLI…¹ AREA_…²   AGE PROX_…³ PROX_…⁴ PROX_…⁵ PROX_…⁶ PROX_…⁷ PROX_…⁸
     <dbl>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1   118635 3000000     309    30    7.94   0.166   2.52     6.62   1.77   0.0584
2   288420 3880000     290    32    6.61   0.280   1.93     7.51   0.545  0.616 
3   267833 3325000     248    33    6.90   0.429   0.502    6.46   0.378  0.141 
4   258380 4250000     127     7    4.04   0.395   1.99     4.91   1.68   0.382 
5   467169 1400000     145    28   11.8    0.119   1.12     6.41   0.565  0.461 
6   466472 1320000     139    22   10.3    0.125   0.789    5.09   0.781  0.0994
# … with 12 more variables: PROX_MRT <dbl>, PROX_PARK <dbl>,
#   PROX_PRIMARY_SCH <dbl>, PROX_TOP_PRIMARY_SCH <dbl>,
#   PROX_SHOPPING_MALL <dbl>, PROX_SUPERMARKET <dbl>, PROX_BUS_STOP <dbl>,
#   NO_Of_UNITS <dbl>, FAMILY_FRIENDLY <dbl>, FREEHOLD <dbl>,
#   LEASEHOLD_99YR <dbl>, geometry <POINT [m]>, and abbreviated variable names
#   ¹​SELLING_PRICE, ²​AREA_SQM, ³​PROX_CBD, ⁴​PROX_CHILDCARE, ⁵​PROX_ELDERLYCARE,
#   ⁶​PROX_URA_GROWTH_AREA, ⁷​PROX_HAWKER_MARKET, ⁸​PROX_KINDERGARTEN

We can see that the output is a point feature data frame.

7 Exploratory Data Analysis (EDA)

In this section, we will use statistical graphic functions from ggplot2 package to perform EDA.

7.1 EDA using statistical graphics

We can plot the distribution of SELLING_PRICE by using a histogram as shown in the code chunk below.

ggplot(data=condo_resale.sf, aes(x=`SELLING_PRICE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

The plot above reveals a right skewed distribution. This means that there are more condominium units transacted at relative lower prices compared to higher prices.

Statistically, the skewed dsitribution can be normalised by using log transformation. In the following code chunk, we will use mutate() of dplyr package to perform the log transformation.

condo_resale.sf <- condo_resale.sf %>%
  mutate(`LOG_SELLING_PRICE` = log(SELLING_PRICE))

Now, we can plot the log transformed variable using the following code chunk.

ggplot(data=condo_resale.sf, aes(x=`LOG_SELLING_PRICE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

We can see that the distribution is relatively less skewed after the log transformation.

7.2 Multiple Histogram Plots distribution of variables

In this section, we will generate trellis plots (i.e. small multiple histograms) by using ggarrange() from ggpubr package.

In the following code chink, we will create 12 histograms. ggarrange() is used to organised these histograms into a 3 columns by 4 rows multiple plot.

AREA_SQM <- ggplot(data=condo_resale.sf, aes(x= `AREA_SQM`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

AGE <- ggplot(data=condo_resale.sf, aes(x= `AGE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CBD <- ggplot(data=condo_resale.sf, aes(x= `PROX_CBD`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CHILDCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_CHILDCARE`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_ELDERLYCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_ELDERLYCARE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_URA_GROWTH_AREA <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_URA_GROWTH_AREA`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_HAWKER_MARKET <- ggplot(data=condo_resale.sf, aes(x= `PROX_HAWKER_MARKET`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_KINDERGARTEN <- ggplot(data=condo_resale.sf, aes(x= `PROX_KINDERGARTEN`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_MRT <- ggplot(data=condo_resale.sf, aes(x= `PROX_MRT`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PARK <- ggplot(data=condo_resale.sf, aes(x= `PROX_PARK`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PRIMARY_SCH <- ggplot(data=condo_resale.sf, aes(x= `PROX_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_TOP_PRIMARY_SCH <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_TOP_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

ggarrange(AREA_SQM, AGE, PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, 
          PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN, PROX_MRT,
          PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH,  
          ncol = 3, nrow = 4)

7.3 Drawing Statistical Point Map

Lastly, we want to have a view of the geographical distribution of the condominium resale prices in Singapore. This map will be prepared by using the tmap package.

For better viewing experience, we will turn on the interactive mode of tmap by using the following code chunk.

tmap_mode("view")
tmap mode set to interactive viewing

The code chunks below is used to create an interactive point symbol map. We will use tm_dots() is used instead of tm_bubbles(). Also we make use of the set.zoom.limits argument of tm_view() to set the minimum and maximum zoom level to 11 and 14 respectively.

We will first read the shapefile using tm_shape() and because there is a missing polygon in the data, we will need to use tmap_options() to treat the missing polygon by specifying check.and.fix to TRUE. There will be a warning message because of this. (Similar warning message will be shown when you didn’t transform the data to EPSG format.)

tm_shape(mpsz_svy21)+
    tmap_options(check.and.fix = TRUE)+
  tm_polygons() +
tm_shape(condo_resale.sf) +  
  tm_dots(col = "SELLING_PRICE",
          alpha = 0.6,
          style="quantile") +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Before moving on to the next section, we will turn R display back to plot mode using the following code chunk.

tmap_mode("plot")
tmap mode set to plotting

8 Hedonic Pricing Modelling in R

In this section, we will build hedonic pricing models for condominium resale units using lm() from R base.

8.1 Simple Linear Regression Method

We will first build a simple linear regression model using SELLING_PRICE as the dependent variable and AREA_SQM as the independent variable. To do this, we put the dependent variable first, i.e. before the “~” sign and the independent variable after this sign.

condo.slr <- lm(formula=SELLING_PRICE ~ AREA_SQM, data = condo_resale.sf)

The functions summary() and anova() can be used to obtain and print a summary and analysis of variance table of the results. In addition, effects(), fitted.values(), and residuals() functions also extract various useful features of the values returned by lm.

summary(condo.slr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM, data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3695815  -391764   -87517   258900 13503875 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -258121.1    63517.2  -4.064 5.09e-05 ***
AREA_SQM      14719.0      428.1  34.381  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 942700 on 1434 degrees of freedom
Multiple R-squared:  0.4518,    Adjusted R-squared:  0.4515 
F-statistic:  1182 on 1 and 1434 DF,  p-value: < 2.2e-16

The output report reveals that the SELLING_PRICE can be explained by using the formula:

      *y = -258121.1 + 14719x1*

The R-squared of 0.4518 reveals that the simple regression model built is able to explain about 45% of the resale prices.

Since the p-value is much smaller than 0.0001, we will reject the null hypothesis that the mean is a good estimator of the SELLING_PRICE. This allows us to infer that the simple linear regression model we have built is a good estimator of the SELLING_PRICE.

The Coefficients section of the report reveals that the p-values of both the estimates of the Intercept and AREA_SQM are each smaller than 0.001. In view of this, the null hypothesis that the values of B0 and B1 are equal to 0 will be rejected. As a result, we can infer that B0 and B1 are good parameter estimates.

To visualise the best fit curve on a scatterplot, we can incorporate lm() as a method function in ggplot’s geometry as shown in the code chunk below.

ggplot(data=condo_resale.sf,  
       aes(x=`AREA_SQM`, y=`SELLING_PRICE`)) +
  geom_point() +
  geom_smooth(method = lm)
`geom_smooth()` using formula = 'y ~ x'

The plot above reveals that there are a few statistical outliers that have relatively high selling prices.

8.2 Multiple Linear Regression Model

8.2.1 Visualising the relationships of the independent variables

Before we build a multiple regression model, it is important to ensure that the independent variables used are not highly correlated to each other (known as multicollinearity) to avoid compromising the resulting regression model.

In this section, we will use the corrplot package to visualise the relationships between the independent variables. The code chunk below is used to plot a scatterplot matrix of the relationship between the independent variables in condo_resale data.frame.

corrplot(cor(condo_resale[, 5:23]), diag = FALSE, order = "AOE",
         tl.pos = "td", tl.cex = 0.5, method = "number", type = "upper",
         number.cex = 0.4)

Matrix reorder is very important for mining the hiden structure and pattern in the matrix. THis allows variables that are relatively more correlated to be placed adjacent to each other in the correlation plot, allowing us to visualise their correlation (if any) more easily. There are four methods in corrplot (parameter order), named “AOE”, “FPC”, “hclust”, “alphabet”. In the code chunk above, AOE order is used. It orders the variables by using the angular order of the eigenvectors method suggested by Michael Friendly.

From the scatterplot matrix, it is clear that Freehold is highly correlated to LEASE_99YEAR. As such, we will only include either one of them for model building. We will exclude LEASE_99YEAR from the subsequent model building steps.

8.3 Building a hedonic pricing model using multiple linear regression method

We will use the following code chunk using lm() to calibrate the multiple linear regression model.

condo.mlr <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE    + 
                  PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                  PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + PROX_KINDERGARTEN + 
                  PROX_MRT  + PROX_PARK + PROX_PRIMARY_SCH + 
                  PROX_TOP_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
                  PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                data=condo_resale.sf)
summary(condo.mlr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + PROX_CHILDCARE + 
    PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + 
    PROX_KINDERGARTEN + PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + 
    PROX_TOP_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3475964  -293923   -23069   241043 12260381 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)           481728.40  121441.01   3.967 7.65e-05 ***
AREA_SQM               12708.32     369.59  34.385  < 2e-16 ***
AGE                   -24440.82    2763.16  -8.845  < 2e-16 ***
PROX_CBD              -78669.78    6768.97 -11.622  < 2e-16 ***
PROX_CHILDCARE       -351617.91  109467.25  -3.212  0.00135 ** 
PROX_ELDERLYCARE      171029.42   42110.51   4.061 5.14e-05 ***
PROX_URA_GROWTH_AREA   38474.53   12523.57   3.072  0.00217 ** 
PROX_HAWKER_MARKET     23746.10   29299.76   0.810  0.41782    
PROX_KINDERGARTEN     147468.99   82668.87   1.784  0.07466 .  
PROX_MRT             -314599.68   57947.44  -5.429 6.66e-08 ***
PROX_PARK             563280.50   66551.68   8.464  < 2e-16 ***
PROX_PRIMARY_SCH      180186.08   65237.95   2.762  0.00582 ** 
PROX_TOP_PRIMARY_SCH    2280.04   20410.43   0.112  0.91107    
PROX_SHOPPING_MALL   -206604.06   42840.60  -4.823 1.57e-06 ***
PROX_SUPERMARKET      -44991.80   77082.64  -0.584  0.55953    
PROX_BUS_STOP         683121.35  138353.28   4.938 8.85e-07 ***
NO_Of_UNITS             -231.18      89.03  -2.597  0.00951 ** 
FAMILY_FRIENDLY       140340.77   47020.55   2.985  0.00289 ** 
FREEHOLD              359913.01   49220.22   7.312 4.38e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 755800 on 1417 degrees of freedom
Multiple R-squared:  0.6518,    Adjusted R-squared:  0.6474 
F-statistic: 147.4 on 18 and 1417 DF,  p-value: < 2.2e-16

8.4 Preparing Publication Quality Table: olsrr method

We can see from the report that not all independent variables are statistically significant. As such, we will revise the model by removing the variables which are not statistically significant.

In the following code chunk, we will keep the variables that are statistically significant.

The resulting condo.mlr1 is an containing lists of items. You can view the details by clicking on this variable in the environment tab. You can pull out the details such as in the following: as.data.frame(condo.mlr1$residuals) as demonstrated in section 8.5.4.

condo.mlr1 <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                   PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                   PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                   PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
                   PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY +
                   FREEHOLD,
                 data=condo_resale.sf)
ols_regress(condo.mlr1)
                             Model Summary                               
------------------------------------------------------------------------
R                       0.807       RMSE                     755957.289 
R-Squared               0.651       Coef. Var                    43.168 
Adj. R-Squared          0.647       MSE                571471422208.591 
Pred R-Squared          0.638       MAE                      414819.628 
------------------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                     ANOVA                                       
--------------------------------------------------------------------------------
                    Sum of                                                      
                   Squares          DF         Mean Square       F         Sig. 
--------------------------------------------------------------------------------
Regression    1.512586e+15          14        1.080418e+14    189.059    0.0000 
Residual      8.120609e+14        1421    571471422208.591                      
Total         2.324647e+15        1435                                          
--------------------------------------------------------------------------------

                                               Parameter Estimates                                                
-----------------------------------------------------------------------------------------------------------------
               model           Beta    Std. Error    Std. Beta       t        Sig           lower          upper 
-----------------------------------------------------------------------------------------------------------------
         (Intercept)     527633.222    108183.223                   4.877    0.000     315417.244     739849.200 
            AREA_SQM      12777.523       367.479        0.584     34.771    0.000      12056.663      13498.382 
                 AGE     -24687.739      2754.845       -0.167     -8.962    0.000     -30091.739     -19283.740 
            PROX_CBD     -77131.323      5763.125       -0.263    -13.384    0.000     -88436.469     -65826.176 
      PROX_CHILDCARE    -318472.751    107959.512       -0.084     -2.950    0.003    -530249.889    -106695.613 
    PROX_ELDERLYCARE     185575.623     39901.864        0.090      4.651    0.000     107302.737     263848.510 
PROX_URA_GROWTH_AREA      39163.254     11754.829        0.060      3.332    0.001      16104.571      62221.936 
            PROX_MRT    -294745.107     56916.367       -0.112     -5.179    0.000    -406394.234    -183095.980 
           PROX_PARK     570504.807     65507.029        0.150      8.709    0.000     442003.938     699005.677 
    PROX_PRIMARY_SCH     159856.136     60234.599        0.062      2.654    0.008      41697.849     278014.424 
  PROX_SHOPPING_MALL    -220947.251     36561.832       -0.115     -6.043    0.000    -292668.213    -149226.288 
       PROX_BUS_STOP     682482.221    134513.243        0.134      5.074    0.000     418616.359     946348.082 
         NO_Of_UNITS       -245.480        87.947       -0.053     -2.791    0.005       -418.000        -72.961 
     FAMILY_FRIENDLY     146307.576     46893.021        0.057      3.120    0.002      54320.593     238294.560 
            FREEHOLD     350599.812     48506.485        0.136      7.228    0.000     255447.802     445751.821 
-----------------------------------------------------------------------------------------------------------------

For multiple regression models, we should use adjusted R-squared for comparison between different MLR models under “Model Summary” section in the report.

Under “ANOVA” section in the report above, since significance is <0.05, we know that the MLR model built is performing better than the mean estimates of all observations.

Under “Parameter Estimates” section of the report, we look at the p-value to identify which independent variable is statistically significant. You can also look at the Beta values (coefficients) to understand an increase in 1 unit of that variable will result in how much increase (by the value of the coefficient) in the resale price when the other variables remain constant. Also the sign is important to check whether it aligns with logic and whether the MLR build makes sense. For instance, look at PROX_MRT, it aligns with what we expect, there is a negative coefficient, meaning the further the house is from an MRT station, the lower the condo price. Also PROX_PRIMARY_SCHOOL is interesting because it has a positive coefficient. (Sometimes this might be because school can be noisy in the morning / throughout the school hours - school bells.) Additionally, what you can do is to use PROX_TOP_PRIMARY_SCHOOL and evaluate whether using this independent variable instead changes the sign of the coefficient.

8.5 Preparing Publication Quality Table: gtsummary method

The gtsummary package provides an elegant and flexible way to create publication-ready summary tables in R.

In the code chunk below, tbl_regression() is used to create a well formatted regression report.

tbl_regression(condo.mlr1, intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
1 CI = Confidence Interval

With the gtsummary package, model statistics can be included in the report by either appending them to the report table by using add_glance_table() or adding as a table source note by using add_glance_source_note() . In the following code chunk, we will demonstrate using add_glance_source_note().

tbl_regression(condo.mlr1, 
               intercept = TRUE) %>% 
  add_glance_source_note(
    label = list(sigma ~ "\U03C3"),
    include = c(r.squared, adj.r.squared, 
                AIC, statistic,
                p.value, sigma))
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
R² = 0.651; Adjusted R² = 0.647; AIC = 42,967; Statistic = 189; p-value = <0.001; σ = 755,957
1 CI = Confidence Interval

8.5.1 Checking for multicollinearity

In this section, we will employ the methods from the olsrr package which is specially designed to perform OLS regression. It provides the following methods to support building better multiple regression models:

  • comprehensive regression output

  • residual diagnostics

  • measures of influence

  • heteroskedasticity tests

  • collinearity diagnostics

  • model fit assessment

  • variable contribution assessment

  • variable selection procedures

In the code chunk below, the ols_vif_tol() from olsrr package is used to test for multicollinearity.

ols_vif_tol(condo.mlr1)
              Variables Tolerance      VIF
1              AREA_SQM 0.8728554 1.145665
2                   AGE 0.7071275 1.414172
3              PROX_CBD 0.6356147 1.573280
4        PROX_CHILDCARE 0.3066019 3.261559
5      PROX_ELDERLYCARE 0.6598479 1.515501
6  PROX_URA_GROWTH_AREA 0.7510311 1.331503
7              PROX_MRT 0.5236090 1.909822
8             PROX_PARK 0.8279261 1.207837
9      PROX_PRIMARY_SCH 0.4524628 2.210126
10   PROX_SHOPPING_MALL 0.6738795 1.483945
11        PROX_BUS_STOP 0.3514118 2.845664
12          NO_Of_UNITS 0.6901036 1.449058
13      FAMILY_FRIENDLY 0.7244157 1.380423
14             FREEHOLD 0.6931163 1.442759

Since the VIF values obtained for the independent variables are less than 10, we can conclude that there is no sign of multicollinearity among the independent variables.

8.5.2 Test for Non-Linearity

In multiple linear regression, it is important to confirm the linearity and additivity relationship between the dependent and independent variables.

In the code chunk below, the ols_plot_resid_fit() of olsrr package is used to perform linearity assumption test.

ols_plot_resid_fit(condo.mlr1)

The plot above reveals that most data points are scattered around the 0 line. As such, we can conclude that the relationships between the dependent variable and independent variables are linear.

8.5.3 Test for Normality Assumption

We will also use ols_plot_resid_hist() from olsrr package to perform normality assumption test.

ols_plot_resid_hist(condo.mlr1)

The figure above suggests that the residual of the multiple linear regression model (i.e. condo.mlr1) follows a normal distribution.

Alternatively, we can perform formal statistical test methods, such as the ols_test_normality() from olsrr package as shown in the code chunk below.

ols_test_normality(condo.mlr1)
Warning in ks.test.default(y, "pnorm", mean(y), sd(y)): ties should not be
present for the Kolmogorov-Smirnov test
-----------------------------------------------
       Test             Statistic       pvalue  
-----------------------------------------------
Shapiro-Wilk              0.6856         0.0000 
Kolmogorov-Smirnov        0.1366         0.0000 
Cramer-von Mises         121.0768        0.0000 
Anderson-Darling         67.9551         0.0000 
-----------------------------------------------

The summary table above reveals that the p-values of the four tests are much smaller than the alpha value of 0.05. Hence we will reject the null hypothesis and infer that there is statistical evidence that the residual are not normally distributed.

8.5.4 Testing for Spatial Autocorrelation

The hedonic model that we are trying to build uses geographically referenced attributes, hence it is also important for us to visualise the residual of the hedonic pricing model spatially.

In order to perform spatial autocorrelation test, we need to convert condo_resale.sf from sf data frame into a SpatialPointsDataFrame.

First, we will export the residual of the hedonic pricing model and save it as a data frame.

mlr.output <- as.data.frame(condo.mlr1$residuals)

Next, we will join the newly created data frame with condo_resale.sf object.

condo_resale.res.sf <- cbind(condo_resale.sf, 
                        condo.mlr1$residuals) %>%
rename(`MLR_RES` = `condo.mlr1.residuals`)

We will then convert condo_resale.res.sf from a simple feature object into a SpatialPointsDataFrame because spdep package can only process sp conformed spatial data objects.

We will use the following code chunk to perform the data conversion.

condo_resale.sp <- as_Spatial(condo_resale.res.sf)
condo_resale.sp
class       : SpatialPointsDataFrame 
features    : 1436 
extent      : 14940.85, 43352.45, 24765.67, 48382.81  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 23
names       : POSTCODE, SELLING_PRICE, AREA_SQM, AGE,    PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN,    PROX_MRT,   PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH, PROX_SHOPPING_MALL, ... 
min values  :    18965,        540000,       34,   0, 0.386916393,    0.004927023,      0.054508623,          0.214539508,        0.051817113,       0.004927023, 0.052779424, 0.029064164,      0.077106132,          0.077106132,                  0, ... 
max values  :   828833,       1.8e+07,      619,  37, 19.18042832,     3.46572633,      3.949157205,           9.15540001,        5.374348075,       2.229045366,  3.48037319,  2.16104919,      3.928989144,          6.748192062,        3.477433767, ... 

Next, we will use tmap package to display the distribution of the residuals on an interactive map.

Again, we will turn on the interactive mode of tmap.

tmap_mode("view")
tmap mode set to interactive viewing

The code chunk below is used to create an interactive point symbol map.

tm_shape(mpsz_svy21)+
  tmap_options(check.and.fix = TRUE) +
  tm_polygons(alpha = 0.4) +
tm_shape(condo_resale.res.sf) +  
  tm_dots(col = "MLR_RES",
          alpha = 0.6,
          style="quantile") +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid
Variable(s) "MLR_RES" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

We will switch the mode back to “plot” before continuing.

tmap_mode("plot")
tmap mode set to plotting

The figure above reveal that there is sign of spatial autocorrelation.

To validate our observation, we will perform the Moran’s I test.

First, we will compute the distance-based weight matrix by using dnearneigh() function from spdep.

nb <- dnearneigh(coordinates(condo_resale.sp), 0, 1500, longlat = FALSE)
summary(nb)
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Next, nb2listw() of spdep packge will be used to convert the output neighbours lists (i.e. nb) into a spatial weights.

nb_lw <- nb2listw(nb, style = 'W')
summary(nb_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Weights style: W 
Weights constants summary:
     n      nn   S0       S1       S2
W 1436 2062096 1436 94.81916 5798.341

We will then use lm.morantest() from spdep package to perform Moran’s I test for residual spatial autocorrelation.

lm.morantest(condo.mlr1, nb_lw)

    Global Moran I for regression residuals

data:  
model: lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD +
PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_MRT +
PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_BUS_STOP +
NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, data = condo_resale.sf)
weights: nb_lw

Moran I statistic standard deviate = 24.366, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Observed Moran I      Expectation         Variance 
    1.438876e-01    -5.487594e-03     3.758259e-05 

The Global Moran’s I test for residual spatial autocorrelation shows that it’s p-value is less than the alpha value of 0.05. Hence, we will reject the null hypothesis that the residuals are randomly distributed.

Since the Observed Global Moran I = 0.144 which is greater than 0, we can infer than the residuals resemble cluster distribution.

9 Building Hedonic Pricing Models using GWmodel

In this section, we will model hedonic prices using both fixed and adaptive bandwidth scheme.

9.1 Building Fixed Bandwidth GWR Model

9.1.1 Computing fixed bandwidth

bw.gwr() of GWModel package is used to determine the optimal fixed bandwidth to use in the model. Optimal fixed bandwidth is specified by setting the argument adaptive to FALSE.

The approach argument defines the stopping rule. There are two possible approaches can be used to determine the stopping rule, they are: CV cross-validation approach and AIC corrected (AICc) approach.

bw.fixed <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
                     PROX_CHILDCARE + PROX_ELDERLYCARE +
                     PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK +
                     PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
                     PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY +
                     FREEHOLD, 
                   data=condo_resale.sp, 
                   approach="CV", 
                   kernel="gaussian", 
                   adaptive=FALSE, 
                   longlat=FALSE)
Fixed bandwidth: 17660.96 CV score: 8.259118e+14 
Fixed bandwidth: 10917.26 CV score: 7.970454e+14 
Fixed bandwidth: 6749.419 CV score: 7.273273e+14 
Fixed bandwidth: 4173.553 CV score: 6.300006e+14 
Fixed bandwidth: 2581.58 CV score: 5.404958e+14 
Fixed bandwidth: 1597.687 CV score: 4.857515e+14 
Fixed bandwidth: 989.6077 CV score: 4.722431e+14 
Fixed bandwidth: 613.7939 CV score: 1.378294e+16 
Fixed bandwidth: 1221.873 CV score: 4.778717e+14 
Fixed bandwidth: 846.0596 CV score: 4.791629e+14 
Fixed bandwidth: 1078.325 CV score: 4.751406e+14 
Fixed bandwidth: 934.7772 CV score: 4.72518e+14 
Fixed bandwidth: 1023.495 CV score: 4.730305e+14 
Fixed bandwidth: 968.6643 CV score: 4.721317e+14 
Fixed bandwidth: 955.7206 CV score: 4.722072e+14 
Fixed bandwidth: 976.6639 CV score: 4.721387e+14 
Fixed bandwidth: 963.7202 CV score: 4.721484e+14 
Fixed bandwidth: 971.7199 CV score: 4.721293e+14 
Fixed bandwidth: 973.6083 CV score: 4.721309e+14 
Fixed bandwidth: 970.5527 CV score: 4.721295e+14 
Fixed bandwidth: 972.4412 CV score: 4.721296e+14 
Fixed bandwidth: 971.2741 CV score: 4.721292e+14 
Fixed bandwidth: 970.9985 CV score: 4.721293e+14 
Fixed bandwidth: 971.4443 CV score: 4.721292e+14 
Fixed bandwidth: 971.5496 CV score: 4.721293e+14 
Fixed bandwidth: 971.3793 CV score: 4.721292e+14 
Fixed bandwidth: 971.3391 CV score: 4.721292e+14 
Fixed bandwidth: 971.3143 CV score: 4.721292e+14 
Fixed bandwidth: 971.3545 CV score: 4.721292e+14 
Fixed bandwidth: 971.3296 CV score: 4.721292e+14 
Fixed bandwidth: 971.345 CV score: 4.721292e+14 
Fixed bandwidth: 971.3355 CV score: 4.721292e+14 
Fixed bandwidth: 971.3413 CV score: 4.721292e+14 
Fixed bandwidth: 971.3377 CV score: 4.721292e+14 
Fixed bandwidth: 971.34 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 
Fixed bandwidth: 971.3408 CV score: 4.721292e+14 
Fixed bandwidth: 971.3403 CV score: 4.721292e+14 
Fixed bandwidth: 971.3406 CV score: 4.721292e+14 
Fixed bandwidth: 971.3404 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 

The results shows that the recommended bandwidth is 971.3405 metres (look at the last row, which represents very small or 0 rate of change). The unit of measurement is metre because the unit of measurement for svy21 is in metre.

In the above code chunk, longlat is set to True only if our data is in degree format and R will fun the calculation.

9.1.2 GWModel method - fixed bandwidth

Now we can use the code chunk below to calibrate the gwr model using fixed bandwidth and gaussian kernel.

gwr.fixed <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                           PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                           PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                           PROX_PRIMARY_SCH + PROX_SHOPPING_MALL +
                           PROX_BUS_STOP + NO_Of_UNITS + 
                           FAMILY_FRIENDLY + FREEHOLD, 
                       data=condo_resale.sp, 
                       bw=bw.fixed, 
                       kernel = 'gaussian', 
                       longlat = FALSE)

The output is saved in a list of class “gwrm”. The code below can be used to display the model output.

gwr.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-10 16:08:54 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.fixed, kernel = "gaussian", 
    longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877 1.20e-06 ***
   AREA_SQM               12777.52     367.48  34.771  < 2e-16 ***
   AGE                   -24687.74    2754.84  -8.962  < 2e-16 ***
   PROX_CBD              -77131.32    5763.12 -13.384  < 2e-16 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950 0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651 3.61e-06 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332 0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179 2.56e-07 ***
   PROX_PARK             570504.81   65507.03   8.709  < 2e-16 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654 0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043 1.93e-09 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074 4.42e-07 ***
   NO_Of_UNITS             -245.48      87.95  -2.791 0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120 0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228 7.98e-13 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 2.2e-16 
   ***Extra Diagnostic information
   Residual sum of squares: 8.120609e+14
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 971.3405 
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                               Min.     1st Qu.      Median     3rd Qu.
   Intercept            -3.5988e+07 -5.1998e+05  7.6780e+05  1.7412e+06
   AREA_SQM              1.0003e+03  5.2758e+03  7.4740e+03  1.2301e+04
   AGE                  -1.3475e+05 -2.0813e+04 -8.6260e+03 -3.7784e+03
   PROX_CBD             -7.7047e+07 -2.3608e+05 -8.3600e+04  3.4646e+04
   PROX_CHILDCARE       -6.0097e+06 -3.3667e+05 -9.7425e+04  2.9007e+05
   PROX_ELDERLYCARE     -3.5000e+06 -1.5970e+05  3.1971e+04  1.9577e+05
   PROX_URA_GROWTH_AREA -3.0170e+06 -8.2013e+04  7.0749e+04  2.2612e+05
   PROX_MRT             -3.5282e+06 -6.5836e+05 -1.8833e+05  3.6922e+04
   PROX_PARK            -1.2062e+06 -2.1732e+05  3.5383e+04  4.1335e+05
   PROX_PRIMARY_SCH     -2.2695e+07 -1.7066e+05  4.8472e+04  5.1555e+05
   PROX_SHOPPING_MALL   -7.2585e+06 -1.6684e+05 -1.0517e+04  1.5923e+05
   PROX_BUS_STOP        -1.4676e+06 -4.5207e+04  3.7601e+05  1.1664e+06
   NO_Of_UNITS          -1.3170e+03 -2.4822e+02 -3.0846e+01  2.5496e+02
   FAMILY_FRIENDLY      -2.2749e+06 -1.1140e+05  7.6214e+03  1.6107e+05
   FREEHOLD             -9.2067e+06  3.8073e+04  1.5169e+05  3.7528e+05
                             Max.
   Intercept            112793548
   AREA_SQM                 21575
   AGE                     434201
   PROX_CBD               2704596
   PROX_CHILDCARE         1654087
   PROX_ELDERLYCARE      38867814
   PROX_URA_GROWTH_AREA  78515730
   PROX_MRT               3124316
   PROX_PARK             18122425
   PROX_PRIMARY_SCH       4637503
   PROX_SHOPPING_MALL     1529952
   PROX_BUS_STOP         11342182
   NO_Of_UNITS              12907
   FAMILY_FRIENDLY        1720744
   FREEHOLD               6073636
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 438.3804 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 997.6196 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 42263.61 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41632.36 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 42515.71 
   Residual sum of squares: 2.53407e+14 
   R-square value:  0.8909912 
   Adjusted R-square value:  0.8430417 

   ***********************************************************************
   Program stops at: 2022-12-10 16:08:55 

The report shows that the adjusted r-square of the gwr is 0.8430 which is significantly better than the global multiple linear regression model of 0.6472.

9.2 Building Adaptive Bandwidth GWR Model

In this section, we will calibrate the gwr-based hedonic pricing model by using adaptive bandwidth approach.

9.2.1 Computing the adaptive bandwidth

To use the adaptive badnwidth approach, we will specify the adaptive argument to TRUE.

bw.adaptive <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE  + 
                        PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE    + 
                        PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                        PROX_PRIMARY_SCH + PROX_SHOPPING_MALL   + PROX_BUS_STOP + 
                        NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                      data=condo_resale.sp, 
                      approach="CV", 
                      kernel="gaussian", 
                      adaptive=TRUE, 
                      longlat=FALSE)
Adaptive bandwidth: 895 CV score: 7.952401e+14 
Adaptive bandwidth: 561 CV score: 7.667364e+14 
Adaptive bandwidth: 354 CV score: 6.953454e+14 
Adaptive bandwidth: 226 CV score: 6.15223e+14 
Adaptive bandwidth: 147 CV score: 5.674373e+14 
Adaptive bandwidth: 98 CV score: 5.426745e+14 
Adaptive bandwidth: 68 CV score: 5.168117e+14 
Adaptive bandwidth: 49 CV score: 4.859631e+14 
Adaptive bandwidth: 37 CV score: 4.646518e+14 
Adaptive bandwidth: 30 CV score: 4.422088e+14 
Adaptive bandwidth: 25 CV score: 4.430816e+14 
Adaptive bandwidth: 32 CV score: 4.505602e+14 
Adaptive bandwidth: 27 CV score: 4.462172e+14 
Adaptive bandwidth: 30 CV score: 4.422088e+14 

The results show that 30 is the recommended number of data points to be used.

9.2.2 Constructing the adaptive bandwidth gwr model

We will now calibrate calibrate the gwr-based hedonic pricing model by using adaptive bandwidth and gaussian kernel as shown in the code chunk below.

gwr.adaptive <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                            PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE + 
                            PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                            PROX_PRIMARY_SCH + PROX_SHOPPING_MALL +
                            PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY +
                            FREEHOLD, 
                          data=condo_resale.sp, bw=bw.adaptive, 
                          kernel = 'gaussian', 
                          adaptive=TRUE, 
                          longlat = FALSE)

The following code displays the model output.

gwr.adaptive
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-10 16:09:02 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.adaptive, kernel = "gaussian", 
    adaptive = TRUE, longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877 1.20e-06 ***
   AREA_SQM               12777.52     367.48  34.771  < 2e-16 ***
   AGE                   -24687.74    2754.84  -8.962  < 2e-16 ***
   PROX_CBD              -77131.32    5763.12 -13.384  < 2e-16 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950 0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651 3.61e-06 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332 0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179 2.56e-07 ***
   PROX_PARK             570504.81   65507.03   8.709  < 2e-16 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654 0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043 1.93e-09 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074 4.42e-07 ***
   NO_Of_UNITS             -245.48      87.95  -2.791 0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120 0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228 7.98e-13 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 2.2e-16 
   ***Extra Diagnostic information
   Residual sum of squares: 8.120609e+14
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Adaptive bandwidth: 30 (number of nearest neighbours)
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                               Min.     1st Qu.      Median     3rd Qu.
   Intercept            -1.3487e+08 -2.4669e+05  7.7928e+05  1.6194e+06
   AREA_SQM              3.3188e+03  5.6285e+03  7.7825e+03  1.2738e+04
   AGE                  -9.6746e+04 -2.9288e+04 -1.4043e+04 -5.6119e+03
   PROX_CBD             -2.5330e+06 -1.6256e+05 -7.7242e+04  2.6624e+03
   PROX_CHILDCARE       -1.2790e+06 -2.0175e+05  8.7158e+03  3.7778e+05
   PROX_ELDERLYCARE     -1.6212e+06 -9.2050e+04  6.1029e+04  2.8184e+05
   PROX_URA_GROWTH_AREA -7.2686e+06 -3.0350e+04  4.5869e+04  2.4613e+05
   PROX_MRT             -4.3781e+07 -6.7282e+05 -2.2115e+05 -7.4593e+04
   PROX_PARK            -2.9020e+06 -1.6782e+05  1.1601e+05  4.6572e+05
   PROX_PRIMARY_SCH     -8.6418e+05 -1.6627e+05 -7.7853e+03  4.3222e+05
   PROX_SHOPPING_MALL   -1.8272e+06 -1.3175e+05 -1.4049e+04  1.3799e+05
   PROX_BUS_STOP        -2.0579e+06 -7.1461e+04  4.1104e+05  1.2071e+06
   NO_Of_UNITS          -2.1993e+03 -2.3685e+02 -3.4699e+01  1.1657e+02
   FAMILY_FRIENDLY      -5.9879e+05 -5.0927e+04  2.6173e+04  2.2481e+05
   FREEHOLD             -1.6340e+05  4.0765e+04  1.9023e+05  3.7960e+05
                            Max.
   Intercept            18758355
   AREA_SQM                23064
   AGE                     13303
   PROX_CBD             11346650
   PROX_CHILDCARE        2892127
   PROX_ELDERLYCARE      2465671
   PROX_URA_GROWTH_AREA  7384059
   PROX_MRT              1186242
   PROX_PARK             2588497
   PROX_PRIMARY_SCH      3381462
   PROX_SHOPPING_MALL   38038564
   PROX_BUS_STOP        12081592
   NO_Of_UNITS              1010
   FAMILY_FRIENDLY       2072414
   FREEHOLD              1813995
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 350.3088 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 1085.691 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 41982.22 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41546.74 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 41914.08 
   Residual sum of squares: 2.528227e+14 
   R-square value:  0.8912425 
   Adjusted R-square value:  0.8561185 

   ***********************************************************************
   Program stops at: 2022-12-10 16:09:03 

The report shows that the adjusted r-square of the gwr is 0.8561 which is significantly better than the global multiple linear regression model of 0.6472.

Note that in the report, the top portion gives global results and the bottom portion gives local results.

Compare AICc for adaptive and adjusted R-square between fixed bandwidth and adaptive bandwidth.

AICc for fixed bandwidth: 42967.14 VS

AICc for adaptive bandwidth: 41982.22 (lower , thus better)

adjusted R-squared for fixed bandwidth: 0.843 VS

adjusted R-squared for adaptive bandwidth: 0.856

You can see how much the explanation is improved when adaptive bandwidth is used instead of the fixed bandwidth by looking at the R-squared.

9.3 Visualising GWR Output

In addition to regression residuals, the output feature class table includes other useful statistics:

  • Condition Number: this diagnostic evaluates local collinearity. In the presence of strong local collinearity, results become unstable. When condition numbers are larger than 30, the results may be unreliable.

  • Local R2: this value ranges between 0.0 and 1.0 and indicates how well the local regression model fits the observed y values. Very low values indicate that the local model is performing poorly. By mapping the Local R2 values, we can see where GWR predicts well and where GWR predicts poorly. This may provide clues about important variables that may be missing from the regression model.

  • Predicted: these are the estimated (or fitted) y values computed by GWR.

  • Residuals: to obtain the residual values, the fitted y values are subtracted from the observed y values. Standardized residuals have a mean of zero and a standard deviation of 1. In addition, a cold-to-hot rendered map of standardized residuals can be generated with these values.

  • Coefficient Standard Error: these values measure the reliability of each coefficient estimate. Confidence in those estimates are higher when standard errors are small in relation to the actual coefficient values. Large standard errors may indicate problems with local collinearity.

9.4 Converting SDF into sf data.frame

To visualise the fields in SDF, we need to first convert it into sf data.frame by using the following code chunk.

condo_resale.sf.adaptive <- st_as_sf(gwr.adaptive$SDF) %>%
  st_transform(crs=3414)
condo_resale.sf.adaptive.svy21 <- st_transform(condo_resale.sf.adaptive, 3414)
condo_resale.sf.adaptive.svy21  
Simple feature collection with 1436 features and 51 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 14940.85 ymin: 24765.67 xmax: 43352.45 ymax: 48382.81
Projected CRS: SVY21 / Singapore TM
First 10 features:
    Intercept  AREA_SQM        AGE  PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE
1   2050011.7  9561.892  -9514.634 -120681.9      319266.92       -393417.79
2   1633128.2 16576.853 -58185.479 -149434.2      441102.18        325188.74
3   3433608.2 13091.861 -26707.386 -259397.8     -120116.82        535855.81
4    234358.9 20730.601 -93308.988 2426853.7      480825.28        314783.72
5   2285804.9  6722.836 -17608.018 -316835.5       90764.78       -137384.61
6  -3568877.4  6039.581 -26535.592  327306.1     -152531.19       -700392.85
7  -2874842.4 16843.575 -59166.727 -983577.2     -177810.50       -122384.02
8   2038086.0  6905.135 -17681.897 -285076.6       70259.40        -96012.78
9   1718478.4  9580.703 -14401.128  105803.4     -657698.02       -123276.00
10  3457054.0 14072.011 -31579.884 -234895.4       79961.45        548581.04
   PROX_URA_GROWTH_AREA    PROX_MRT  PROX_PARK PROX_PRIMARY_SCH
1            -159980.20  -299742.96 -172104.47        242668.03
2            -142290.39 -2510522.23  523379.72       1106830.66
3            -253621.21  -936853.28  209099.85        571462.33
4           -2679297.89 -2039479.50 -759153.26       3127477.21
5             303714.81   -44567.05  -10284.62         30413.56
6             -28051.25   733566.47 1511488.92        320878.23
7            1397676.38 -2745430.34  710114.74       1786570.95
8             269368.71   -14552.99   73533.34         53359.73
9            -361974.72  -476785.32 -132067.59        -40128.92
10           -150024.38 -1503835.53  574155.47        108996.67
   PROX_SHOPPING_MALL PROX_BUS_STOP  NO_Of_UNITS FAMILY_FRIENDLY  FREEHOLD
1          300881.390     1210615.4  104.8290640       -9075.370  303955.6
2          -87693.378     1843587.2 -288.3441183      310074.664  396221.3
3         -126732.712     1411924.9   -9.5532945        5949.746  168821.7
4          -29593.342     7225577.5 -161.3551620     1556178.531 1212515.6
5           -7490.586      677577.0   42.2659674       58986.951  328175.2
6          258583.881     1086012.6 -214.3671271      201992.641  471873.1
7         -384251.210     5094060.5   -0.9212521      359659.512  408871.9
8          -39634.902      735767.1   30.1741069       55602.506  347075.0
9          276718.757     2815772.4  675.1615559      -30453.297  503872.8
10        -454726.822     2123557.0  -21.3044311     -100935.586  213324.6
         y    yhat    residual CV_Score Stud_residual Intercept_SE AREA_SQM_SE
1  3000000 2886532   113468.16        0    0.38207013     516105.5    823.2860
2  3880000 3466801   413198.52        0    1.01433140     488083.5    825.2380
3  3325000 3616527  -291527.20        0   -0.83780678     963711.4    988.2240
4  4250000 5435482 -1185481.63        0   -2.84614670     444185.5    617.4007
5  1400000 1388166    11834.26        0    0.03404453    2119620.6   1376.2778
6  1320000 1516702  -196701.94        0   -0.72065800   28572883.7   2348.0091
7  3410000 3266881   143118.77        0    0.41291992     679546.6    893.5893
8  1420000 1431955   -11955.27        0   -0.03033109    2217773.1   1415.2604
9  2025000 1832799   192200.83        0    0.52018109     814281.8    943.8434
10 2550000 2223364   326635.53        0    1.10559735    2410252.0   1271.4073
      AGE_SE PROX_CBD_SE PROX_CHILDCARE_SE PROX_ELDERLYCARE_SE
1   5889.782    37411.22          319111.1           120633.34
2   6226.916    23615.06          299705.3            84546.69
3   6510.236    56103.77          349128.5           129687.07
4   6010.511   469337.41          304965.2           127150.69
5   8180.361   410644.47          698720.6           327371.55
6  14601.909  5272846.47         1141599.8          1653002.19
7   8970.629   346164.20          530101.1           148598.71
8   8661.309   438035.69          742532.8           399221.05
9  11791.208    89148.35          704630.7           329683.30
10  9941.980   173532.77          500976.2           281876.74
   PROX_URA_GROWTH_AREA_SE PROX_MRT_SE PROX_PARK_SE PROX_PRIMARY_SCH_SE
1                 56207.39    185181.3     205499.6            152400.7
2                 76956.50    281133.9     229358.7            165150.7
3                 95774.60    275483.7     314124.3            196662.6
4                470762.12    279877.1     227249.4            240878.9
5                474339.56    363830.0     364580.9            249087.7
6               5496627.21    730453.2    1741712.0            683265.5
7                371692.97    375511.9     297400.9            344602.8
8                517977.91    423155.4     440984.4            261251.2
9                153436.22    285325.4     304998.4            278258.5
10               239182.57    571355.7     599131.8            331284.8
   PROX_SHOPPING_MALL_SE PROX_BUS_STOP_SE NO_Of_UNITS_SE FAMILY_FRIENDLY_SE
1               109268.8         600668.6       218.1258           131474.7
2                98906.8         410222.1       208.9410           114989.1
3               119913.3         464156.7       210.9828           146607.2
4               177104.1         562810.8       361.7767           108726.6
5               301032.9         740922.4       299.5034           160663.7
6              2931208.6        1418333.3       602.5571           331727.0
7               249969.5         821236.4       532.1978           129241.2
8               351634.0         775038.4       338.6777           171895.1
9               289872.7         850095.5       439.9037           220223.4
10              265529.7         631399.2       259.0169           189125.5
   FREEHOLD_SE Intercept_TV AREA_SQM_TV     AGE_TV PROX_CBD_TV
1     115954.0    3.9720784   11.614302  -1.615447 -3.22582173
2     130110.0    3.3460017   20.087361  -9.344188 -6.32792021
3     141031.5    3.5629010   13.247868  -4.102368 -4.62353528
4     138239.1    0.5276150   33.577223 -15.524302  5.17080808
5     210641.1    1.0784029    4.884795  -2.152474 -0.77155660
6     374347.3   -0.1249043    2.572214  -1.817269  0.06207388
7     182216.9   -4.2305303   18.849348  -6.595605 -2.84136028
8     216649.4    0.9189786    4.879056  -2.041481 -0.65080678
9     220473.7    2.1104224   10.150733  -1.221345  1.18682383
10    206346.2    1.4343123   11.068059  -3.176418 -1.35360852
   PROX_CHILDCARE_TV PROX_ELDERLYCARE_TV PROX_URA_GROWTH_AREA_TV PROX_MRT_TV
1         1.00048819          -3.2612693            -2.846248368 -1.61864578
2         1.47178634           3.8462625            -1.848971738 -8.92998600
3        -0.34404755           4.1319138            -2.648105057 -3.40075727
4         1.57665606           2.4756745            -5.691404992 -7.28705261
5         0.12990138          -0.4196596             0.640289855 -0.12249416
6        -0.13361179          -0.4237096            -0.005103357  1.00426206
7        -0.33542751          -0.8235874             3.760298131 -7.31116712
8         0.09462126          -0.2405003             0.520038994 -0.03439159
9        -0.93339393          -0.3739225            -2.359121712 -1.67102293
10        0.15961128           1.9461735            -0.627237944 -2.63204802
   PROX_PARK_TV PROX_PRIMARY_SCH_TV PROX_SHOPPING_MALL_TV PROX_BUS_STOP_TV
1   -0.83749312           1.5923022            2.75358842        2.0154464
2    2.28192684           6.7019454           -0.88662640        4.4941192
3    0.66565951           2.9058009           -1.05686949        3.0419145
4   -3.34061770          12.9836105           -0.16709578       12.8383775
5   -0.02820944           0.1220998           -0.02488294        0.9145046
6    0.86781794           0.4696245            0.08821750        0.7656963
7    2.38773567           5.1844351           -1.53719231        6.2029165
8    0.16674816           0.2042469           -0.11271635        0.9493299
9   -0.43301073          -0.1442145            0.95462153        3.3123012
10   0.95831249           0.3290120           -1.71252687        3.3632555
   NO_Of_UNITS_TV FAMILY_FRIENDLY_TV FREEHOLD_TV  Local_R2
1     0.480589953        -0.06902748    2.621347 0.8846744
2    -1.380026395         2.69655779    3.045280 0.8899773
3    -0.045279967         0.04058290    1.197050 0.8947007
4    -0.446007570        14.31276425    8.771149 0.9073605
5     0.141120178         0.36714544    1.557983 0.9510057
6    -0.355762335         0.60891234    1.260522 0.9247586
7    -0.001731033         2.78285441    2.243875 0.8310458
8     0.089093858         0.32346758    1.602012 0.9463936
9     1.534793921        -0.13828365    2.285410 0.8380365
10   -0.082251138        -0.53369623    1.033819 0.9080753
                    geometry
1  POINT (22085.12 29951.54)
2   POINT (25656.84 34546.2)
3   POINT (23963.99 32890.8)
4  POINT (27044.28 32319.77)
5  POINT (41042.56 33743.64)
6   POINT (39717.04 32943.1)
7   POINT (28419.1 33513.37)
8  POINT (40763.57 33879.61)
9  POINT (23595.63 28884.78)
10 POINT (24586.56 33194.31)
gwr.adaptive.output <- as.data.frame(gwr.adaptive$SDF)
condo_resale.sf.adaptive <- cbind(condo_resale.res.sf, as.matrix(gwr.adaptive.output))

Next, we will use glimpse() to display the contents of condo_resale.sf.adaptive sf data frame.

glimpse(condo_resale.sf.adaptive)
Rows: 1,436
Columns: 77
$ POSTCODE                <dbl> 118635, 288420, 267833, 258380, 467169, 466472…
$ SELLING_PRICE           <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ AREA_SQM                <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 1…
$ AGE                     <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22,…
$ PROX_CBD                <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783…
$ PROX_CHILDCARE          <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543…
$ PROX_ELDERLYCARE        <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.…
$ PROX_URA_GROWTH_AREA    <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.4106…
$ PROX_HAWKER_MARKET      <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969…
$ PROX_KINDERGARTEN       <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076…
$ PROX_MRT                <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.…
$ PROX_PARK               <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.…
$ PROX_PRIMARY_SCH        <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.…
$ PROX_TOP_PRIMARY_SCH    <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.…
$ PROX_SHOPPING_MALL      <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.…
$ PROX_SUPERMARKET        <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.…
$ PROX_BUS_STOP           <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340…
$ NO_Of_UNITS             <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34…
$ FAMILY_FRIENDLY         <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0…
$ FREEHOLD                <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ LOG_SELLING_PRICE       <dbl> 14.91412, 15.17135, 15.01698, 15.26243, 14.151…
$ MLR_RES                 <dbl> -1489099.55, 415494.57, 194129.69, 1088992.71,…
$ Intercept               <dbl> 2050011.67, 1633128.24, 3433608.17, 234358.91,…
$ AREA_SQM.1              <dbl> 9561.892, 16576.853, 13091.861, 20730.601, 672…
$ AGE.1                   <dbl> -9514.634, -58185.479, -26707.386, -93308.988,…
$ PROX_CBD.1              <dbl> -120681.94, -149434.22, -259397.77, 2426853.66…
$ PROX_CHILDCARE.1        <dbl> 319266.925, 441102.177, -120116.816, 480825.28…
$ PROX_ELDERLYCARE.1      <dbl> -393417.795, 325188.741, 535855.806, 314783.72…
$ PROX_URA_GROWTH_AREA.1  <dbl> -159980.203, -142290.389, -253621.206, -267929…
$ PROX_MRT.1              <dbl> -299742.96, -2510522.23, -936853.28, -2039479.…
$ PROX_PARK.1             <dbl> -172104.47, 523379.72, 209099.85, -759153.26, …
$ PROX_PRIMARY_SCH.1      <dbl> 242668.03, 1106830.66, 571462.33, 3127477.21, …
$ PROX_SHOPPING_MALL.1    <dbl> 300881.390, -87693.378, -126732.712, -29593.34…
$ PROX_BUS_STOP.1         <dbl> 1210615.44, 1843587.22, 1411924.90, 7225577.51…
$ NO_Of_UNITS.1           <dbl> 104.8290640, -288.3441183, -9.5532945, -161.35…
$ FAMILY_FRIENDLY.1       <dbl> -9075.370, 310074.664, 5949.746, 1556178.531, …
$ FREEHOLD.1              <dbl> 303955.61, 396221.27, 168821.75, 1212515.58, 3…
$ y                       <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ yhat                    <dbl> 2886531.8, 3466801.5, 3616527.2, 5435481.6, 13…
$ residual                <dbl> 113468.16, 413198.52, -291527.20, -1185481.63,…
$ CV_Score                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Stud_residual           <dbl> 0.38207013, 1.01433140, -0.83780678, -2.846146…
$ Intercept_SE            <dbl> 516105.5, 488083.5, 963711.4, 444185.5, 211962…
$ AREA_SQM_SE             <dbl> 823.2860, 825.2380, 988.2240, 617.4007, 1376.2…
$ AGE_SE                  <dbl> 5889.782, 6226.916, 6510.236, 6010.511, 8180.3…
$ PROX_CBD_SE             <dbl> 37411.22, 23615.06, 56103.77, 469337.41, 41064…
$ PROX_CHILDCARE_SE       <dbl> 319111.1, 299705.3, 349128.5, 304965.2, 698720…
$ PROX_ELDERLYCARE_SE     <dbl> 120633.34, 84546.69, 129687.07, 127150.69, 327…
$ PROX_URA_GROWTH_AREA_SE <dbl> 56207.39, 76956.50, 95774.60, 470762.12, 47433…
$ PROX_MRT_SE             <dbl> 185181.3, 281133.9, 275483.7, 279877.1, 363830…
$ PROX_PARK_SE            <dbl> 205499.6, 229358.7, 314124.3, 227249.4, 364580…
$ PROX_PRIMARY_SCH_SE     <dbl> 152400.7, 165150.7, 196662.6, 240878.9, 249087…
$ PROX_SHOPPING_MALL_SE   <dbl> 109268.8, 98906.8, 119913.3, 177104.1, 301032.…
$ PROX_BUS_STOP_SE        <dbl> 600668.6, 410222.1, 464156.7, 562810.8, 740922…
$ NO_Of_UNITS_SE          <dbl> 218.1258, 208.9410, 210.9828, 361.7767, 299.50…
$ FAMILY_FRIENDLY_SE      <dbl> 131474.73, 114989.07, 146607.22, 108726.62, 16…
$ FREEHOLD_SE             <dbl> 115954.0, 130110.0, 141031.5, 138239.1, 210641…
$ Intercept_TV            <dbl> 3.9720784, 3.3460017, 3.5629010, 0.5276150, 1.…
$ AREA_SQM_TV             <dbl> 11.614302, 20.087361, 13.247868, 33.577223, 4.…
$ AGE_TV                  <dbl> -1.6154474, -9.3441881, -4.1023685, -15.524301…
$ PROX_CBD_TV             <dbl> -3.22582173, -6.32792021, -4.62353528, 5.17080…
$ PROX_CHILDCARE_TV       <dbl> 1.000488185, 1.471786337, -0.344047555, 1.5766…
$ PROX_ELDERLYCARE_TV     <dbl> -3.26126929, 3.84626245, 4.13191383, 2.4756745…
$ PROX_URA_GROWTH_AREA_TV <dbl> -2.846248368, -1.848971738, -2.648105057, -5.6…
$ PROX_MRT_TV             <dbl> -1.61864578, -8.92998600, -3.40075727, -7.2870…
$ PROX_PARK_TV            <dbl> -0.83749312, 2.28192684, 0.66565951, -3.340617…
$ PROX_PRIMARY_SCH_TV     <dbl> 1.59230221, 6.70194543, 2.90580089, 12.9836104…
$ PROX_SHOPPING_MALL_TV   <dbl> 2.753588422, -0.886626400, -1.056869486, -0.16…
$ PROX_BUS_STOP_TV        <dbl> 2.0154464, 4.4941192, 3.0419145, 12.8383775, 0…
$ NO_Of_UNITS_TV          <dbl> 0.480589953, -1.380026395, -0.045279967, -0.44…
$ FAMILY_FRIENDLY_TV      <dbl> -0.06902748, 2.69655779, 0.04058290, 14.312764…
$ FREEHOLD_TV             <dbl> 2.6213469, 3.0452799, 1.1970499, 8.7711485, 1.…
$ Local_R2                <dbl> 0.8846744, 0.8899773, 0.8947007, 0.9073605, 0.…
$ coords.x1               <dbl> 22085.12, 25656.84, 23963.99, 27044.28, 41042.…
$ coords.x2               <dbl> 29951.54, 34546.20, 32890.80, 32319.77, 33743.…
$ geometry                <POINT [m]> POINT (22085.12 29951.54), POINT (25656.…

9.5 Visualising local R2

In this section, we will create an interactive point symbol map.

tmap_mode("view")
tmap mode set to interactive viewing
tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "Local_R2",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Again, we will switch off the interactive plot mode.

tmap_mode("plot")
tmap mode set to plotting

9.5.1 By URA Planning Region

In here, we will visualise the results against the URA planning regions.

tm_shape(mpsz_svy21[mpsz_svy21$REGION_N=="CENTRAL REGION", ])+
  tm_polygons()+
tm_shape(condo_resale.sf.adaptive) + 
  tm_bubbles(col = "Local_R2",
           size = 0.15,
           border.col = "gray60",
           border.lwd = 1)
Warning: The shape mpsz_svy21[mpsz_svy21$REGION_N == "CENTRAL REGION", ] is
invalid. See sf::st_is_valid

9.6 Visualising Coefficient Estimates

We will use the following code chunk to create an interactive map. In the following code chunk, you can set zoom limits to control the view so that there isnt a case where zooming out too much will result in other country being seen also. Also you can use tmap_arrange() to use sync and set to TRUE so that the 2 maps will be synchronised when you zoom / move one of the maps.

tmap_mode("view")
tmap mode set to interactive viewing
AREA_SQM_SE <- tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_SE",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

AREA_SQM_TV <- tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_TV",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

tmap_arrange(AREA_SQM_SE, AREA_SQM_TV, 
             asp=1, ncol=2,
             sync = TRUE)
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

9.6.1 By URA Planning Region

tm_shape(mpsz_svy21[mpsz_svy21$REGION_N=="CENTRAL REGION", ])+
  tm_polygons()+
tm_shape(condo_resale.sf.adaptive) + 
  tm_bubbles(col = "Local_R2",
           size = 0.15,
           border.col = "gray60",
           border.lwd = 1)
Warning: The shape mpsz_svy21[mpsz_svy21$REGION_N == "CENTRAL REGION", ] is
invalid (after reprojection). See sf::st_is_valid