Hands-on Exercise 1A: Geospatial Data Wrangling with R

1 Overview

In this hands-on exercise, I’ve learnt how to import and perform data wrangling on geospatial data using appropriate R packages.

2 Getting Started

The code chunk below installs and loads sf and tidyverse packages into R environment.

pacman::p_load(sf, tidyverse)

3 Importing Geospatial Data

The following geospatial data will be imported in T by using st_read() of sf package.

  • MP14_SUBZONE_WEB_PL, a polygon feature layer in ESRI shapefile format,

  • CyclingPath, a line feature layer in ESRI shapefile format, and

  • PreSchool, a point feature layer in kml file format.

3.1 Importing polygon feature data

mpsz <- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\lohsiying\ISSS624\hands_on_ex\hands_on_ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

3.2 Importing polyline feature data

cyclingpath <- st_read(dsn = "data/geospatial", layer = "CyclingPath")
Reading layer `CyclingPath' from data source 
  `C:\lohsiying\ISSS624\hands_on_ex\hands_on_ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 1625 features and 2 fields
Geometry type: LINESTRING
Dimension:     XY
Bounding box:  xmin: 12711.19 ymin: 28711.33 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

3.3 Importing GIS data

preschool <- st_read("data/geospatial/pre-schools-location-kml.kml")
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `C:\lohsiying\ISSS624\hands_on_ex\hands_on_ex1\data\geospatial\pre-schools-location-kml.kml' 
  using driver `KML'
Simple feature collection with 1359 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

4 Checking the Content of A Simple Feature Data Frame

4.1 Working with st_geometry()

st_geometry(mpsz)
Geometry set for 323 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
MULTIPOLYGON (((31495.56 30140.01, 31980.96 296...
MULTIPOLYGON (((29092.28 30021.89, 29119.64 300...
MULTIPOLYGON (((29932.33 29879.12, 29947.32 298...
MULTIPOLYGON (((27131.28 30059.73, 27088.33 297...
MULTIPOLYGON (((26451.03 30396.46, 26440.47 303...

4.2 Working with glimpse()

glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N  <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C  <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND     <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C   <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC    <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR     <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR     <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…

4.3 Working with head()

head(mpsz, n=5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1        1          1   MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2        2          1   PEARL'S HILL    OTSZ01      Y          OUTRAM
3        3          3      BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4        4          8 HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5        5          3        REDHILL    BMSZ03      N     BUKIT MERAH
  PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1         MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2         OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3         SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4         BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5         BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
    Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1 29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...

5 Plotting the Geospatial Data

The following plots are obtained to have a better visualization of the geospatial features.

plot(mpsz)
Warning: plotting the first 9 out of 15 attributes; use max.plot = 15 to plot
all

We could also plot only the geometry as shown below.

plot(st_geometry(mpsz))

As well as choosing only a specific attribute to be plotted as shown below.

plot(mpsz["PLN_AREA_N"])

Using plot() for plotting geospatial objects offers a quick look. For high cartographic quality plot, other R package such as tmap should be used.

6 Working with Projection

To perform geoprocessing using two geospatial data, we need to ensure that both geospatial data are projected using similar coordinate system. Projection transformation allows a simple feature data frame to be projected from one coordinate system to another coordinate system.

6.1 Assigning EPSG code to a simple feature data frame

st_crs(mpsz)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]
mpsz3414 <- st_set_crs(mpsz, 3414)
Warning: st_crs<- : replacing crs does not reproject data; use st_transform for
that
st_crs(mpsz3414)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

6.2 Transforming the projection of preschool from wgs84 to svy21

Data in geographic coordinate system is not appropriate when distance or/and area measurements are required. In the following, the geographic coordinate system is projected to another coordinate system mathematically.

preschool3414 <- st_transform(preschool, crs = 3414)

7 Importing and Converting An Aspatial Data

7.1 Importing the aspatial data

The following listings is an aspatial data which captures the x- and y-coordinates of the data points. Aspatial data is unlike geospatial data which contains information about a specific location on the Earth’s surface.

listings <- read_csv("data/aspatial/listings.csv")
Rows: 4252 Columns: 16
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr   (5): name, host_name, neighbourhood_group, neighbourhood, room_type
dbl  (10): id, host_id, latitude, longitude, price, minimum_nights, number_o...
date  (1): last_review

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
list(listings)
[[1]]
# A tibble: 4,252 × 16
       id name     host_id host_…¹ neigh…² neigh…³ latit…⁴ longi…⁵ room_…⁶ price
    <dbl> <chr>      <dbl> <chr>   <chr>   <chr>     <dbl>   <dbl> <chr>   <dbl>
 1  50646 Pleasan…  227796 Sujatha Centra… Bukit …    1.33    104. Privat…    80
 2  71609 Ensuite…  367042 Belinda East R… Tampin…    1.35    104. Privat…   178
 3  71896 B&B  Ro…  367042 Belinda East R… Tampin…    1.35    104. Privat…    81
 4  71903 Room 2-…  367042 Belinda East R… Tampin…    1.35    104. Privat…    81
 5 275343 Conveni… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    52
 6 275344 15 mins… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    40
 7 294281 5 mins … 1521514 Elizab… Centra… Newton     1.31    104. Privat…    72
 8 301247 Nice ro… 1552002 Rahul   Centra… Geylang    1.32    104. Privat…    41
 9 324945 20 Mins… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    49
10 330089 Accomo@… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    49
# … with 4,242 more rows, 6 more variables: minimum_nights <dbl>,
#   number_of_reviews <dbl>, last_review <date>, reviews_per_month <dbl>,
#   calculated_host_listings_count <dbl>, availability_365 <dbl>, and
#   abbreviated variable names ¹​host_name, ²​neighbourhood_group,
#   ³​neighbourhood, ⁴​latitude, ⁵​longitude, ⁶​room_type

7.2 Creating a simple feature data frame from aspatial data frame

In the following, a simple feature data frame is created and the data is transformed into a svy21 projected coordinates system. In the resulting data frame, the longitude and latitude columns will be removed and a new column geometry is added.

listings_sf <- st_as_sf(listings,
                        coords = c("longitude", "latitude"),
                        crs=4326) %>% 
    st_transform(crs = 3414)
glimpse(listings_sf)
Rows: 4,252
Columns: 15
$ id                             <dbl> 50646, 71609, 71896, 71903, 275343, 275…
$ name                           <chr> "Pleasant Room along Bukit Timah", "Ens…
$ host_id                        <dbl> 227796, 367042, 367042, 367042, 1439258…
$ host_name                      <chr> "Sujatha", "Belinda", "Belinda", "Belin…
$ neighbourhood_group            <chr> "Central Region", "East Region", "East …
$ neighbourhood                  <chr> "Bukit Timah", "Tampines", "Tampines", …
$ room_type                      <chr> "Private room", "Private room", "Privat…
$ price                          <dbl> 80, 178, 81, 81, 52, 40, 72, 41, 49, 49…
$ minimum_nights                 <dbl> 90, 90, 90, 90, 14, 14, 90, 8, 14, 14, …
$ number_of_reviews              <dbl> 18, 20, 24, 48, 20, 13, 133, 105, 14, 1…
$ last_review                    <date> 2014-07-08, 2019-12-28, 2014-12-10, 20…
$ reviews_per_month              <dbl> 0.22, 0.28, 0.33, 0.67, 0.20, 0.16, 1.2…
$ calculated_host_listings_count <dbl> 1, 4, 4, 4, 50, 50, 7, 1, 50, 50, 50, 4…
$ availability_365               <dbl> 365, 365, 365, 365, 353, 364, 365, 90, …
$ geometry                       <POINT [m]> POINT (22646.02 35167.9), POINT (…

8 Geoprocessing with sf package

In this section, two commonly used geoprocessing functions, namely buffering and point in polygon count will be performed.

8.1 Buffering

The following computes 5-meter buffers (extensions) around cycling paths by using st_buffer() and then computing the corresponding area of the buffers using st_area().

buffer_cycling <- st_buffer(cyclingpath, dist = 5, nQuadSegs = 30)
buffer_cycling$AREA <- st_area(buffer_cycling)
sum(buffer_cycling$AREA)
773143.9 [m^2]

8.2 Point-in-polygon count

In the following, we want to identify the number of pre-schools in each planning subzone. This is done by using st_intersects() to identify the pre-schools in each planning subzone and then followed by using length() to calculate the number of pre-schools in each planning subzone.

mpsz3414$`PreSch Count` <- lengths(st_intersects(mpsz3414, preschool3414))

We run the following to check the summary statistics of the newly derived PreSch Count field.

summary(mpsz3414$`PreSch Count`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   0.000   2.000   4.207   6.000  37.000 

The following lists the planning subzone with the most number of pre-schools.

top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 23449.05 ymin: 46001.23 xmax: 25594.22 ymax: 47996.47
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1      290          3 WOODLANDS EAST    WDSZ03      N  WOODLANDS         WD
      REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR   Y_ADDR
1 NORTH REGION       NR C90769E43EE6B0F2 2014-12-05 24506.64 46991.63
  SHAPE_Leng SHAPE_Area                       geometry PreSch Count
1   6603.608    2553464 MULTIPOLYGON (((24786.75 46...           37

Next, we want to calculate the density of pre-schools for each planning subzone. We will first derive the area of each planning subzone by using st_area() before computing the density.

mpsz3414$Area <- mpsz3414 %>% 
    st_area()
mpsz3414 <- mpsz3414 %>% 
    mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)

9 Exploratory Data Analysis

In this section, we will use ggplot2 functions to create functional and statistical graphs for EDA.

First, we will use a histogram to reveal the distribution of PreSch Density.

hist(mpsz3414$`PreSch Density`)

As hist() does not provide much customization, we will use ggplot2 function instead.

ggplot(data = mpsz3414,
       aes(x = as.numeric(`PreSch Density`))) +
    geom_histogram(bins = 20,
                   color = "black",
                   fill = "light blue") +
    labs(title = "Are pre-schools evenly distributed in Singapore?",
         subtitle = "There are many planning subzones with a single pre-school. On the other hand, \nthere are two planning subzones with at least 20 pre-schools.",
         x = "Pre-school density (per km sq)",
         y = "Frequency")

We can also visualize the pre-school count against pre-school density by using a scatterplot.

ggplot(data = mpsz3414,
       aes(x = as.numeric(`PreSch Density`),
           y = as.numeric(`PreSch Count`))) +
    geom_point() +
    labs( x = "Pre-school density (per kem sq)",
          y = "Pre-school count") + 
    xlim(0, 40) +
    ylim(0, 40)